Resonance tongues and patterns in periodically forced reaction-diffusion systems.

نویسندگان

  • Anna L Lin
  • Aric Hagberg
  • Ehud Meron
  • Harry L Swinney
چکیده

Various resonant and near-resonant patterns form in a light-sensitive Belousov-Zhabotinsky (BZ) reaction in response to a spatially homogeneous time-periodic perturbation with light. The regions (tongues) in the forcing frequency and forcing amplitude parameter plane where resonant patterns form are identified through analysis of the temporal response of the patterns. Resonant and near-resonant responses are distinguished. The unforced BZ reaction shows both spatially uniform oscillations and rotating spiral waves, while the forced system shows patterns such as standing-wave labyrinths and rotating spiral waves. The patterns depend on the amplitude and frequency of the perturbation, and also on whether the system responds to the forcing near the uniform oscillation frequency or the spiral wave frequency. Numerical simulations of a forced FitzHugh-Nagumo reaction-diffusion model show both resonant and near-resonant patterns similar to the BZ chemical system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Resonant phase patterns in a reaction-diffusion system

Resonance regions similar to the Arnol'd tongues found in single oscillator frequency locking are observed in experiments using a spatially extended periodically forced Belousov-Zhabotinsky system. We identify six distinct 2:1 subharmonic resonant patterns and describe them in terms of the position-dependent phase and magnitude of the oscillations. Some experimentally observed features are also...

متن کامل

Four-phase patterns in forced oscillatory systems

We investigate pattern formation in self-oscillating systems forced by an external periodic perturbation. Experimental observations and numerical studies of reaction-diffusion systems and an analysis of an amplitude equation are presented. The oscillations in each of these systems entrain to rational multiples of the perturbation frequency for certain values of the forcing frequency and amplitu...

متن کامل

Resonant-pattern formation induced by additive noise in periodically forced reaction-diffusion systems.

We report frequency-locked resonant patterns induced by additive noise in periodically forced reaction-diffusion Brusselator model. In the regime of 2:1 frequency-locking and homogeneous oscillation, the introduction of additive noise, which is colored in time and white in space, generates and sustains resonant patterns of hexagons, stripes, and labyrinths which oscillate at half of the forcing...

متن کامل

Global Parametrization and Computation of Resonance Surfaces for Periodically Forced Oscillators

Periodically forced planar oscillators are typically studied by varying the two parameters of forcing amplitude and forcing frequency. Such differential equations can be reduced via stroboscopic sampling to a two-parameter family of diffeomorphisms of the plane. A bifurcation analysis of this family almost always includes a study of the birth and death of periodic orbits. For low forcing amplit...

متن کامل

Pattern formation in 4:1 resonance of the periodically forced CO oxidation on Pt(110).

Periodically forced oscillatory reaction-diffusion systems may show complex spatiotemporal patterns. At high-frequency resonant forcing, multiple-phase patterns can be found. In the present work, the dynamics of turbulent CO oxidation on Pt(110), forced with the fourth harmonic of the system's natural frequency, is investigated. Experiments result in subharmonic entrainment, where the system lo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 69 6 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2004